p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42⋊10C22, C24.20C22, C23.18C23, C22.45C24, C2.152+ 1+4, (C4×D4)⋊19C2, C4⋊C4⋊17C22, C22⋊Q8⋊15C2, (C2×Q8)⋊5C22, C42⋊2C2⋊4C2, C22≀C2.2C2, C4.4D4⋊12C2, C22⋊C4⋊8C22, (C2×C4).30C23, (C22×C4)⋊4C22, C42⋊C2⋊14C2, (C2×D4).34C22, C22.9(C4○D4), C22.D4⋊10C2, C2.24(C2×C4○D4), (C2×C22⋊C4)⋊15C2, SmallGroup(64,232)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.45C24
G = < a,b,c,d,e,f | a2=b2=e2=f2=1, c2=a, d2=b, ab=ba, dcd-1=ac=ca, fdf=ad=da, ae=ea, af=fa, ece=bc=cb, bd=db, be=eb, bf=fb, cf=fc, de=ed, ef=fe >
Subgroups: 197 in 124 conjugacy classes, 75 normal (17 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C24, C2×C22⋊C4, C42⋊C2, C4×D4, C22≀C2, C22⋊Q8, C22.D4, C22.D4, C4.4D4, C42⋊2C2, C22.45C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, C22.45C24
Character table of C22.45C24
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 2 | 2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)
(1 15)(2 16)(3 13)(4 14)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 10 15 7)(2 9 16 6)(3 12 13 5)(4 11 14 8)
(1 3)(2 14)(4 16)(5 7)(6 11)(8 9)(10 12)(13 15)
(1 15)(2 16)(3 13)(4 14)(5 10)(6 11)(7 12)(8 9)
G:=sub<Sym(16)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,10,15,7)(2,9,16,6)(3,12,13,5)(4,11,14,8), (1,3)(2,14)(4,16)(5,7)(6,11)(8,9)(10,12)(13,15), (1,15)(2,16)(3,13)(4,14)(5,10)(6,11)(7,12)(8,9)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,10,15,7)(2,9,16,6)(3,12,13,5)(4,11,14,8), (1,3)(2,14)(4,16)(5,7)(6,11)(8,9)(10,12)(13,15), (1,15)(2,16)(3,13)(4,14)(5,10)(6,11)(7,12)(8,9) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16)], [(1,15),(2,16),(3,13),(4,14),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,10,15,7),(2,9,16,6),(3,12,13,5),(4,11,14,8)], [(1,3),(2,14),(4,16),(5,7),(6,11),(8,9),(10,12),(13,15)], [(1,15),(2,16),(3,13),(4,14),(5,10),(6,11),(7,12),(8,9)]])
G:=TransitiveGroup(16,81);
C22.45C24 is a maximal subgroup of
C22.64C25 C22.79C25 C22.80C25 C22.83C25 C22.84C25 C22.99C25 C22.102C25 C22.110C25 C42⋊C23 C22.122C25 C22.123C25 C22.124C25 C22.134C25 C22.149C25 C22.153C25 C22.155C25 C22.157C25
C42⋊D2p: C42⋊4D4 C42⋊12D6 C42⋊18D6 C42⋊23D6 C42⋊26D6 C42⋊10D10 C42⋊16D10 C42⋊21D10 ...
C2p.2+ 1+4: C22.70C25 C22.94C25 C22.103C25 C23.144C24 C22.127C25 C22.129C25 C22.131C25 C22.140C25 ...
C22.45C24 is a maximal quotient of
C23.224C24 C23.225C24 C23.235C24 C23.240C24 C23.241C24 C23.250C24 C24.221C23 C23.255C24 C24.223C23 C23.311C24 C23.318C24 C24.563C23 C24⋊4Q8 C24.567C23 C24.278C23 C23.372C24 C23.380C24 C23.382C24 C23.388C24 C24.577C23 C23.398C24 C23.405C24 C23.410C24 C24.309C23 C23.416C24 C23.417C24 C23.418C24 C23.420C24 C24.311C23 C23.422C24 C24.313C23 C23.426C24 C24.315C23 C23.430C24 C23.431C24 C23.432C24 C23.434C24 C24.326C23 C23.457C24 C23.461C24 C24.583C23 C24.584C23 C23.472C24 C23.473C24 C24.338C23 C24.339C23 C24.340C23 C24.341C23 C23.478C24 C23.486C24 C23.488C24 C24.346C23 C24.347C23 C24.348C23 C23.500C24 C23.502C24 C42⋊8Q8 C24.355C23 C42⋊9Q8 C23.584C24 C23.585C24 C23.593C24 C23.597C24 C23.606C24 C23.617C24 C23.622C24 C24.420C23 C23.630C24 C23.635C24 C23.636C24 C23.637C24 C24.426C23 C24.427C23 C23.640C24 C23.641C24 C24.428C23 C23.643C24 C24.430C23 C23.645C24 C24.432C23 C23.647C24 C24.434C23 C23.649C24 C24.435C23 C23.651C24 C23.652C24 C24.437C23 C23.654C24 C23.655C24 C23.656C24 C24.438C23 C23.658C24 C23.659C24 C23.660C24 C24.440C23 C23.662C24 C23.663C24 C23.664C24 C23.678C24 C23.682C24 C23.686C24 C23.689C24 C23.696C24 C23.697C24 C23.698C24 C23.699C24
C42⋊D2p: C42⋊22D4 C42⋊23D4 C42⋊24D4 C42⋊25D4 C42⋊26D4 C42⋊12D6 C42⋊18D6 C42⋊23D6 ...
C24.D2p: C24.95D4 C24.96D4 C24.42D6 C24.43D6 C24.31D10 C24.32D10 C24.31D14 C24.32D14 ...
C4⋊C4⋊D2p: C24.282C23 C24.283C23 C23.367C24 C24.290C23 C23.377C24 C23.379C24 C24.327C23 C24.332C23 ...
Matrix representation of C22.45C24 ►in GL4(𝔽5) generated by
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
3 | 0 | 0 | 0 |
2 | 2 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
4 | 3 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 2 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 |
4 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
G:=sub<GL(4,GF(5))| [4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,4,0,0,0,0,4],[3,2,0,0,0,2,0,0,0,0,0,1,0,0,1,0],[4,0,0,0,3,1,0,0,0,0,2,0,0,0,0,2],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,4],[1,4,0,0,0,4,0,0,0,0,4,0,0,0,0,4] >;
C22.45C24 in GAP, Magma, Sage, TeX
C_2^2._{45}C_2^4
% in TeX
G:=Group("C2^2.45C2^4");
// GroupNames label
G:=SmallGroup(64,232);
// by ID
G=gap.SmallGroup(64,232);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,2,96,217,199,650,297]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=e^2=f^2=1,c^2=a,d^2=b,a*b=b*a,d*c*d^-1=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,e*c*e=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*f=f*c,d*e=e*d,e*f=f*e>;
// generators/relations
Export